Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.667
Filtrar
1.
PLoS One ; 19(4): e0301103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568980

RESUMO

Birch bark tar is the most widely documented adhesive in prehistoric Europe. More recent periods attest to a diversification in terms of the materials used as adhesives and their application. Some studies have shown that conifer resins and beeswax were added to produce compound adhesives. For the Iron Age, no comparative large-scale studies have been conducted to provide a wider perspective on adhesive technologies. To address this issue, we identify adhesive substances from the Iron Age in north-eastern France. We applied organic residue analysis to 65 samples from 16 archaeological sites. This included residues adhering to ceramics, from vessel surface coatings, repaired ceramics, vessel contents, and adhesive lumps. Our findings show that, even during the Iron Age in north-eastern France, birch bark tar is one of the best-preserved adhesive substances, used for at least 400 years. To a lesser extent, Pinaceae resin and beeswax were also identified. Through statistical analyses, we show that molecular composition differs in samples, correlating with adhesive function. This has implications for our understanding of birch bark tar production, processing and mode of use during the Iron Age in France and beyond.


Assuntos
Adesivos , Colagem Dentária , Adesivos/química , Betula/química , Resinas Vegetais , Arqueologia , Tecnologia , Teste de Materiais , Cimentos de Resina/química , Resinas Compostas/química
2.
Food Res Int ; 185: 114289, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658073

RESUMO

A food adhesive comprising tannic acid (TA) and soybean protein isolate (SPI) was developed to establish a cohesive bond between soy protein gel and simulated fat. The impact of varying TA concentrations and pH levels on the adhesive's rheology, thermal stability, chemical structure, and tensile strength were investigated. Rheological results revealed a gradual decrease in adhesive viscosity with increasing TA content. Differential scanning calorimetry (DSC) and thermal gravimetric (TG) results indicated that the stability of the adhesive improved with higher TA concentrations, reaching its peak at 0.50% TA addition. The incorporation of TA resulted in the cross-linking of amino group in unfolded SPI molecules, forming a mesh structure. However, under alkaline conditions (pH 9), adhesive viscosity and stability increased compared to the original pH. This shift was due to the disruption of the SPI colloidal charge structure, an increase in the stretching of functional groups, further unfolding of the structure, and an enhanced binding of SPI to TA. Under the initial pH conditions, SPI reacted with TA's active site to form covalent crosslinked networks and hydrogen bonds. In alkaline condition, beyond hydrogen and ionic bonding, the catechol structure was oxidized, forming an ortho-quinone that crosslinked SPI and created a denser structure. Tensile strength measurements and freeze-thaw experiments revealed that the adhesive exhibited maximum tensile strength and optimal adhesion with 0.75% TA at pH 9, providing the best overall performance. This study provides a new formulation and approach for developing plant-based meat analogues adhesives.


Assuntos
Polifenóis , Reologia , Proteínas de Soja , Taninos , Resistência à Tração , Taninos/química , Proteínas de Soja/química , Concentração de Íons de Hidrogênio , Viscosidade , Adesivos/química , 60450
3.
Acta Biomater ; 173: 231-246, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38465268

RESUMO

Enterocutaneous fistula (ECF) is a severe medical condition where an abnormal connection forms between the gastrointestinal tract and skin. ECFs are, in most cases, a result of surgical complications such as missed enterotomies or anastomotic leaks. The constant leakage of enteric and fecal contents from the fistula site leads to skin breakdown and increases the risk of infection. Despite advances in surgical techniques and postoperative management, ECF accounts for significant mortality rates, estimated between 15-20%, and causes debilitating morbidity. Therefore, there is a critical need for a simple and effective method to seal and heal ECF. Injectable hydrogels with combined properties of robust mechanical properties and cell infiltration/proliferation have the potential to block and heal ECF. Herein, we report the development of an injectable nanoengineered adhesive hydrogel (INAH) composed of a synthetic nanosilicate (Laponite®) and a gelatin-dopamine conjugate for treating ECF. The hydrogel undergoes fast cross-linking using a co-injection method, resulting in a matrix with improved mechanical and adhesive properties. INAH demonstrates appreciable blood clotting abilities and is cytocompatible with fibroblasts. The adhesive properties of the hydrogel are demonstrated in ex vivo adhesion models with skin and arteries, where the volume stability in the hydrated internal environment facilitates maintaining strong adhesion. In vivo assessments reveal that the INAH is biocompatible, supporting cell infiltration and extracellular matrix deposition while not forming fibrotic tissue. These findings suggest that this INAH holds promising translational potential for sealing and healing ECF.


Assuntos
Fístula Intestinal , Adesivos Teciduais , Humanos , Hidrogéis/farmacologia , Adesivos , Gelatina , Fístula Intestinal/terapia
4.
Am J Dent ; 37(1): 29-34, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458980

RESUMO

PURPOSE: To compare the in vitro effect of laser and bur preparation on marginal adaptation of Class V cavities restored with a 2-step self-etch and distinct universal one-component universal adhesives used in self-etching mode. METHODS: 96 Class V cavities were prepared with conventional burs or with an Er:YAG laser. Four universal self-etch (Unibond Extra Low Shrinkage, All Bond Universal, SKB-100 and Prime&Bond active) and a 2-step self-etch adhesive (Clearfil SE Bond) that served as control were used to restore the cavities with direct composite. The percentages of continuous margins were evaluated by quantitative SEM analysis before and after a fatigue test consisting of 240,000 occlusal loads and 600 warm/cold thermal cycles. RESULTS: The marginal adaptation of bur prepared restorations was statistically superior to laser-prepared ones. Class V cavities restored with Clearfil SE Bond and the one-component self-etching universal adhesives All Bond Universal and Prime&Bond active presented the highest and statistically similar percentages of continuous margins before and after loading under both bur and laser cavity preparation. The lowest percentages of continuous margins were observed in the groups restored with the low shrinking adhesive (Unibond ELS), with medians of 49 and 21 for bur and laser prepared cavities after loading. CLINICAL SIGNIFICANCE: Class V cavities presented smoother and higher percentages of continuous margins when prepared by bur rather than by laser. The 2-step self-etch adhesive Clearfil SE Bond and 1-step self-etch universal adhesives All Bond Universal and Prime&Bond active showed a comparable marginal performance.


Assuntos
Colagem Dentária , Cárie Dentária , Lasers de Estado Sólido , Humanos , Resinas Compostas/química , Cimentos Dentários , Cimentos de Resina/química , Cárie Dentária/terapia , Preparo da Cavidade Dentária , Adesivos Dentinários/química , Adesivos
5.
Acta Biomater ; 179: 130-148, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460932

RESUMO

Poor skin adhesion and mechanical properties are common problems of pressure-sensitive adhesive (PSA) in transdermal drug delivery system (TDDS). Its poor water compatibility also causes the patch to fall off after sweating or soaking in the application site. To solve this problem, poly (2-Ethylhexyl acrylate-co-N-Vinyl-2-pyrrolidone-co-N-(2-Hydroxyethyl)acrylamide) (PENH), a cross-linked pyrrolidone polyacrylate PSA, was designed to improve the adhesion and water resistance of PSA through electrostatic force and hydrogen bonding system. The structure of PENH was characterized by 1H NMR, FTIR, DSC, and other methods. The mechanism was studied by FTIR, rheological test, and molecular simulation. The results showed that the PENH patch could adhere to human skin for more than 10 days without cold flow, and it could still adhere after sweating or water contact. In contrast, the commercial PSA Duro-Tak® 87-4098 and Duro-Tak® 87-2852 fell off completely on the 3rd and 6th day, respectively, and Duro-Tak® 87-2510 showed a significant dark ring on the second day. Mechanism studies have shown that the hydrogen bond formed by 2-ethylhexyl acrylate (2-EHA), N-vinyl-2-pyrrolidinone (NVP), and N-(2-Hydroxyethyl)acrylamide (HEAA) enhances cohesion, the interaction with skin improves skin adhesion, and the electrostatic interaction with water or drug molecules enhances the ability of water absorption and drug loading. Due to the synergistic effect of hydrogen bonds and electrostatic force, PENH can maintain high cohesion after drug loading or water absorption. PENH provides a choice for the development of water-compatible patches with long-lasting adhesion. STATEMENT OF SIGNIFICANCE: Based on the synergistic effect of hydrogen bonding and electrostatic force, a hydrogen-bonded, cross-linked pyrrolidone acrylate pressure-sensitive adhesive for transdermal drug delivery was designed and synthesized, which has high adhesion and cohesive strength and is non-irritating to the skin. The patch can be applied on the skin surface continuously for more than 10 days without the phenomenon of "dark ring", and the patch can remain adherent after the patient sweats or bathes. This provides a good strategy for choosing a matrix for patches that require prolonged administration.


Assuntos
Adesivos , Administração Cutânea , Ligação de Hidrogênio , Pirrolidinonas , Eletricidade Estática , Água , Adesivos/química , Adesivos/farmacologia , Água/química , Humanos , Pirrolidinonas/química , Pressão , Animais , Acrilatos/química , Sistemas de Liberação de Medicamentos , Pele/efeitos dos fármacos , Pele/metabolismo , Reagentes de Ligações Cruzadas/química
6.
ACS Synth Biol ; 13(4): 1191-1204, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38536670

RESUMO

The presence of a hydration layer in humid and underwater environments challenges adhesive-substrate interactions and prevents effective bonding, which has become a significant obstacle to the development of adhesives in the industrial and biomedical fields. In this study, ultrahigh-molecular-weight (UHMW) silk-elastin-like proteins (SELP) with 3,4-dihydroxyphenylalanine (DOPA) converted from tyrosine residues by tyrosinase exhibited excellent adhesive properties on different interfaces, such as glass, aluminum, wood, polypropylene sheets, and pigskin, under both dry and wet conditions. Additionally, by incorporating trace amounts of cross-linking agents like Fe3+, NaIO4, and tris(hydroxymethyl) phosphine (THP), the mussel-inspired adhesives maintained a stable and excellent adhesion, broadening the conditions of application. Notably, the UHMW SELP adhesive exhibited remarkable underwater adhesion properties with a shear strength of 0.83 ± 0.17 MPa on glass. It also demonstrated good adhesion to biological tissues including the kidney, liver, heart, and lungs. In vitro cytocompatibility testing using L929 cells showed minimal toxicity, highlighting its potential application in the biomedical field. The sustainable, cytocompatible, cost-effective, and highly efficient adhesive provides valuable insights for the design and development of a new protein-based underwater adhesive for medical application.


Assuntos
Adesivos , Monofenol Mono-Oxigenase , Proteínas Recombinantes de Fusão , Adesivos/química , Elastina , Seda
7.
Int J Biol Macromol ; 265(Pt 2): 130958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503369

RESUMO

In this study, polyethylene glycol was grafted onto pullulan polysaccharides, resulting in the development of a novel adhesive termed PLUPE, offering superior drug loading capacity and rapid release efficiency. The efficacy of PLUPE was rigorously evaluated through various tests, including the tack test, shear strength test, 180° peel strength test, and human skin adhesion test. The results demonstrated that PLUPE exhibited a static shear strength that was 4.6 to 9.3 times higher than conventional PSAs, ensuring secure adhesion for over 3 days on human skin. A comprehensive analysis, encompassing electrical potential evaluation, calculation of interaction parameters, and FT-IR spectra, elucidated why improved the miscibility between the drug and PSAs, that the significant enhancement of intermolecular hydrogen bonding in the PLUPE structure. ATR-FTIR, rheological, and thermodynamic analyses further revealed that the hydrogen bonding network in PLUPE primarily interacted with polar groups in the skin. This interaction augmented the fluidity and free volume of PSA molecules, thereby promoting efficient drug release. The results confirmed the safety profile of PLUPE through skin irritation tests and MTT assays, bolstering its viability for application in TDDS patches. In conclusion, PLUPE represented a groundbreaking adhesive solution for TDDS patches, successfully overcoming longstanding challenges associated with PSAs.


Assuntos
Adesivos , Glucanos , Polietilenoglicóis , Humanos , Adesivos/química , Polietilenoglicóis/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Pele/metabolismo , Liberação Controlada de Fármacos , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Administração Cutânea , Adesivo Transdérmico
8.
Int J Biol Macromol ; 264(Pt 2): 130770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467230

RESUMO

Traditional adhesives easily release toxic gases during the preparation process or apply to wood composite products, which have adverse effects on the human body and the environment. Herein, an all-water-based high-performance wood adhesive is prepared using TEMPO-oxidized cellulose nanofiber (TOCNF), acrylamide (AM), and tannic acid (TA) through free radical polymerization. Different characteristics of the prepared composites, including morphology, injectability, and adhesion properties, have been investigated. Results showed that the TA/TOCNF/PAM composite has excellent injectability. The addition of TA can enhance the lap shear strength of the TA/TOCNF/PAM composites and with the increment of TA content, the lap shear strength gradually decreases. The formation of effective hydrogen bonds and Van der Waals interaction among the rich functional groups in the composite, lead to strong lap shear strength on different substrates. The composite with 5.0 g of AM, 5.0 g of the TOCNF suspension and 0.1 g TA possesses a high lap shear strength of 10.5 MPa on wood and 1.5 MPa on aluminium. Based on strong adhesion properties and excellent injectability, the TA/TOCNF/PAM composites have great potential in the furniture construction and building industries.


Assuntos
Celulose Oxidada , Nanofibras , Polifenóis , Humanos , Adesivos/química , Celulose/química , Nanofibras/química , Madeira/química , Água/análise , Celulose Oxidada/análise
9.
Int J Biol Macromol ; 264(Pt 2): 130732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479658

RESUMO

Nanocellulose-based tissue adhesives show promise for achieving rapid hemostasis and effective wound healing. Conventional methods, such as sutures and staples, have limitations, prompting the exploration of bioadhesives for direct wound adhesion and minimal tissue damage. Nanocellulose, a hydrolysis product of cellulose, exhibits superior biocompatibility and multifunctional properties, gaining interest as a base material for bioadhesive development. This study explores the potential of nanocellulose-based adhesives for hemostasis and wound healing using 3D printing techniques. Nanocellulose enables the creation of biodegradable adhesives with minimal adverse effects and opens avenues for advanced wound healing and complex tissue regeneration, such as skin, blood vessels, lungs, cartilage, and muscle. This study reviews recent trends in various nanocellulose-based 3D printed hydrogel patches for tissue engineering applications. The review also introduces various types of nanocellulose and their synthesis, surface modification, and bioadhesive fabrication techniques via 3D printing for smart wound healing.


Assuntos
Adesivos , Hidrogéis , Hidrogéis/farmacologia , Engenharia Tecidual , Cartilagem , Impressão Tridimensional
10.
ACS Biomater Sci Eng ; 10(4): 2151-2164, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453640

RESUMO

Poly(methyl methacrylate) (PMMA) is commonly used for dental dentures, but it has the drawback of promoting oral health risks due to oral bacterial adhesion. Recently, various nanoparticles have been incorporated into PMMA to tackle these issues. This study aims to investigate the mechanophysical and antimicrobial adhesive properties of a denture resin by incorporating of nanoclay into PMMA. Specimens were prepared by adding 0, 1, 2, and 4 wt % surface-modified nanoclay (Sigma) to self-polymerizing PMMA denture resin. These specimens were then evaluated using FTIR, TGA/DTG, and FE-SEM with EDS. Various mechanical and surface physical properties, including nanoindentation, were measured and compared with those of pure PMMA. Antiadhesion experiments were conducted by applying a Candida albicans (ATCC 11006) suspension to the surface of the specimens. The antiadhesion activity of C. albicans was confirmed through a yeast-wall component (mannan) and mRNA-seq analysis. The bulk mechanical properties of nanoclay-PMMA composites were decreased compared to those of pure PMMA, while the flexural strength and modulus met the ISO 20795-1 requirement. However, there were no significant differences in the nanoindentation hardness and elastic modulus. The surface energy revealed a significant decrease at 4 wt % nanoclay-PMMA. The antiadhesion effect of Candida albicans was evident along with nanoclay content in the nanocomposites and confirmed by the reduced attachment of mannan on nanoclay-PMMA composites. mRNA-seq analysis supported overall transcriptome changes in altering attachment and metabolism behaviors on the surface. The nanoclay-PMMA materials showed a lower surface energy as the content increased, leading to an antiadhesion effect against Candida albicans. These findings indicate that incorporating nanoclay into PMMA surfaces could be a valuable strategy for preventing the fungal biofilm formation of denture base materials.


Assuntos
Adesivos , Polimetil Metacrilato , Mananas , Teste de Materiais , Dentaduras , RNA Mensageiro
11.
Biomacromolecules ; 25(4): 2574-2586, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38525818

RESUMO

Developing biocompatible injectable hydrogels with high mechanical strength and rapid strong tissue adhesion for hemostatic sealing of uncontrolled bleeding remains a prevailing challenge. Herein, we engineer an injectable and photo-cross-linkable hydrogel based on naturally derived gelatin methacrylate (GelMA) and N-hydroxysuccinimide-modified poly(γ-glutamic acid) (γPGA-NHS). The chemically dual-cross-linked hydrogel rapidly forms after UV light irradiation and covalently bonds to the underlying tissue to provide robust adhesion. We demonstrate a significantly improved hemostatic efficacy of the hydrogel using various injury models in rats compared to the commercially available fibrin glue. Notably, the hydrogel can achieve hemostasis in porcine liver and spleen incision, and femoral artery puncture models. Moreover, the hydrogel is used for sutureless repair of the liver defect in a rat model with a significantly suppressed inflammatory response, enhanced angiogenesis, and superior healing efficacy compared to fibrin glue. Together, this study offers a promising bioadhesive for treating severe bleeding and facilitating wound repair.


Assuntos
Hemostáticos , Hidrogéis , Ratos , Animais , Suínos , Hidrogéis/farmacologia , Hidrogéis/química , Adesivo Tecidual de Fibrina , Adesivos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Hemostáticos/farmacologia , Hemorragia/tratamento farmacológico , Cicatrização
12.
Acta Biomater ; 178: 68-82, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452962

RESUMO

Oral ulcers can significantly reduce the life quality of patients and even lead to malignant transformations. Local treatments using topical agents are often ineffective because of the wet and dynamic environment of the oral cavity. Current clinical treatments for oral ulcers, such as corticosteroids, have limitations and side effects for long-term usage. Here, we develop adhesive hydrogel patches (AHPs) that effectively promote the healing of oral ulcers in a rat model. The AHPs are comprised of the quaternary ammonium salt of chitosan, aldehyde-functionalized hyaluronic acid, and a tridentate complex of protocatechualdehyde and Fe3+ (PF). The AHPs exhibit tunable mechanical properties, self-healing ability, and wet adhesion on the oral mucosa. Through controlling the formula of the AHPs, PF released from the AHPs in a temporal manner. We further show that the AHPs have good biocompatibility and the capability to heal oral ulcers rapidly. Both in vitro and in vivo experiments indicate that the PF released from AHPs facilitated ulcer healing by suppressing inflammation, promoting macrophage polarization, enhancing cell proliferation, and inducing epithelial-mesenchymal transition involving inflammation, proliferation, and maturation stages. This study provides insights into the healing of oral ulcers and presents an effective therapeutic biomaterial for the treatment of oral ulcers. STATEMENT OF SIGNIFICANCE: By addressing the challenges associated with current clinical treatments for oral ulcers, the development of adhesive hydrogel patches (AHPs) presents an effective approach. These AHPs possess unique properties, such as tunable mechanical characteristics, self-healing ability, and strong adhesion to the mucosa. Through controlled release of protocatechualdehyde-Fe3+ complex, the AHPs facilitate the healing process by suppressing inflammation, promoting cell proliferation, and inducing epithelial-mesenchymal transition. The study not only provides valuable insights into the healing mechanisms of oral ulcers but also introduces a promising therapeutic biomaterial. This work holds significant scientific interest and demonstrates the potential to greatly improve the treatment outcomes and quality of life for individuals suffering from oral ulcers.


Assuntos
Benzaldeídos , Catecóis , Hidrogéis , Úlceras Orais , Humanos , Ratos , Animais , Hidrogéis/farmacologia , Adesivos , Qualidade de Vida , Materiais Biocompatíveis , Inflamação , Antibacterianos/farmacologia
13.
ACS Nano ; 18(13): 9451-9469, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38452378

RESUMO

The production of wood-based panels has a significant demand for mechanically strong and flexible biomass adhesives, serving as alternatives to nonrenewable and toxic formaldehyde-based adhesives. Nonetheless, plywood usually exhibits brittle fracture due to the inherent trade-off between rigidity and toughness, and it is susceptible to damage and deformation defects in production applications. Herein, inspired by the microstructure of dragonfly wings and the cross-linking structure of plant cell walls, a soybean meal (SM) adhesive with great strength and toughness was developed. The strategy was combined with a multiple assembly system based on the tannic acid (TA) stripping/modification of molybdenum disulfide (MoS2@TA) hybrids, phenylboronic acid/quaternary ammonium doubly functionalized chitosan (QCP), and SM. Motivated by the microstructure of dragonfly wings, MoS2@TA was tightly bonded with the SM framework through Schiff base and strong hydrogen bonding to dissipate stress energy through crack deflection, bridging, and immobilization. QCP imitated borate chemistry in plant cell walls to optimize interfacial interactions within the adhesive by borate ester bonds, boron-nitrogen coordination bonds, and electrostatic interactions and dissipate energy through sacrificial bonding. The shear strength and fracture toughness of the SM/QCP/MoS2@TA adhesive were 1.58 MPa and 0.87 J, respectively, which were 409.7% and 866.7% higher than those of the pure SM adhesive. In addition, MoS2@TA and QCP gave the adhesive good mildew resistance, durability, weatherability, and fire resistance. This bioinspired design strategy offers a viable and sustainable approach for creating multifunctional strong and tough biobased materials.


Assuntos
Odonatos , Polifenóis , Animais , Molibdênio , Boratos , Parede Celular , Soja , Adesivos
14.
Biomacromolecules ; 25(4): 2645-2655, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456398

RESUMO

Conventional techniques for the closure of wounds, such as sutures and staples, have significant drawbacks that can negatively impact wound healing. Tissue adhesives have emerged as promising alternatives, but poor adhesion, low mechanical properties, and toxicity have hindered their widespread clinical adoption. In this work, a dual modified, aldehyde and methacrylate hyaluronic acid (HA) biopolymer (HA-MA-CHO) has been synthesized through a simplified route for use as a double cross-linked network (DCN) hydrogel (HA-MA-CHO-DCN) adhesive for the effective closure and sealing of wounds. HA-MA-CHO-DCN cross-links in two stages: initial cross-linking of the aldehyde functionality (CHO) of HA-MA-CHO using a disulfide-containing cross-linker, 3,3'-dithiobis (propionic hydrazide) (DTPH), leading to the formation of a self-healing injectable gel, followed by further cross-linking via ultraviolet (UV) initiated polymerization of the methacrylate (MA) functionality. This hydrogel adhesive shows a stable swelling behavior and remarkable versatility as the storage modulus (G') has shown to be highly tunable (103-105 Pa) for application to many different wound environments. The new HA-MA-CHO-DCN hydrogel showed excellent adhesive properties by surpassing the burst pressure and lap-shear strength for the widely used bovine serum albumin-glutaraldehyde (BSAG) glue while maintaining excellent cell viability.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/química , Ácido Hialurônico/química , Adesivos , Glutaral , Metacrilatos
15.
Bioresour Technol ; 399: 130645, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554759

RESUMO

Hardwood kraft lignin from the pulping industry is burned or discarded. Its valorization was conducted by subjecting fractionation, amination with ethylenediamine, diethylenetriamine, and monoethanolamine, and crosslinking with formaldehyde or glyoxal to obtain bio-based wood adhesives. Acetone-soluble and insoluble hardwood kraft lignin were prepared and subjected to amination and then crosslinking. Fourier transform infrared, 13C NMR, 15N NMR, and X-ray photoelectron spectroscopy results revealed successful amination with amide, imine, and ether bonds and crosslinking of all samples. Hardwood kraft lignin aminated with diethylenetriamine/ethylenediamine and crosslinked using glyoxal exhibited excellent results in comparison with samples crosslinked using formaldehyde. Acetone-insoluble hardwood kraft lignin aminated and crosslinked using diethylenetriamine and formaldehyde, respectively, exhibited excellent adhesion strength with plywood, satisfying the requirements of the Korean standards. The amination and crosslinking of industrial waste hardwood kraft lignin constitute a beneficial valorization method.


Assuntos
Acetona , Aldeídos , Aminação , Madeira/química , Adesivos/análise , Adesivos/química , Poliaminas/análise , Glioxal/análise , Glioxal/química , Lignina/química , Formaldeído/análise , Etilenodiaminas
16.
Int J Biol Macromol ; 265(Pt 1): 130680, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462121

RESUMO

The catechol moiety found within mussel proteins plays a pivotal role in enhancing their adhesive properties. Nonetheless, catechol compounds, such as dopamine (DOP) derivatives, are susceptible to oxidation, leading to the formation of quinone. This oxidation process poses a significant challenge in the development of DOP-based hydrogels, hampering their adhesion capabilities and hindering polymerization. To protect DOP moieties from oxidation, DOP and N-(3-aminopropyl)methacrylamide (AMA) moieties were grafted onto the side groups of biocompatible poly(glutamic acid) (PGA). Subsequently, the DOP unit, serving as a second guest, would be captured by a polymerizable rotaxane of cucurbituril (CB[n]), in which the host molecule CB[8] complexed with the first guest, polymerizable methyl viologen (MV), forming a protective function and dynamic cross-linking. Upon exposure to light curing, a composite network emerged through the synergy of covalent cross-linking and supramolecular host-guest complexation of DOP with CB[8]. The generated complexation between DOP and CB[8] could protect the DOP moieties, resulting in photocured hydrogels with exceptional adhesive strength and remarkable tensile capabilities. Moreover, 3D printing technology was used to create various models with these DOP-based hydrogels, demonstrating their promising applications in future.


Assuntos
Compostos Macrocíclicos , Rotaxanos , Hidrogéis , Dopamina , Adesivos
17.
PLoS Biol ; 22(3): e3002555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478577

RESUMO

The papillae of tunicate larvae contribute sensory, adhesive, and metamorphosis-regulating functions that are crucial for the biphasic lifestyle of these marine, non-vertebrate chordates. We have identified additional molecular markers for at least 5 distinct cell types in the papillae of the model tunicate Ciona, allowing us to further study the development of these organs. Using tissue-specific CRISPR/Cas9-mediated mutagenesis and other molecular perturbations, we reveal the roles of key transcription factors and signaling pathways that are important for patterning the papilla territory into a highly organized array of different cell types and shapes. We further test the contributions of different transcription factors and cell types to the production of the adhesive glue that allows for larval attachment during settlement, and to the processes of tail retraction and body rotation during metamorphosis. With this study, we continue working towards connecting gene regulation to cellular functions that control the developmental transition between the motile larva and sessile adult of Ciona.


Assuntos
Urocordados , Animais , Urocordados/genética , Urocordados/metabolismo , Adesivos/metabolismo , Larva , Biomarcadores/metabolismo , Fatores de Transcrição/metabolismo , Metamorfose Biológica
18.
Carbohydr Polym ; 333: 121998, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494208

RESUMO

Hemostatic powders that adapt to irregularly shaped wounds, allowing for easy application and stable storage, have gained popularity for first-aid hemorrhage control. However, traditional powders often provide weak thrombus support and exhibit limited tissue adhesion, making them susceptible to dislodgment by the bloodstream. Inspired by fibrin fibers coagulation mediator, we have developed a bi-component hemostatic powder composed of positively charged quaternized chitosan (QCS) and negatively charged catechol-modified alginate (Cat-SA). Upon application to the wound, the bi-component powders (QCS/Cat-SA) rapidly absorb plasma and dissolve into chains. These chains interact with each other to form a network, which can effectively bind and entraps clustered red blood cells and platelets, ultimately leading to the creation of a durable and robust thrombus. Significantly, these interconnected polymers adhere to the injury site, offering protection against thrombus disruption caused by the bloodstream. Benefiting from these synthetic properties, QCS/Cat-SA demonstrates superior hemostatic performance compared to commercial hemostatic powders like Celox™ in both arterial injuries and non-compressible liver puncture wounds. Importantly, QCS/Cat-SA exhibits excellent antibacterial activity, cytocompatibility, and hemocompatibility. These advantages of QCS/Cat-SA, including strong blood clotting, wet tissue adherence, antibacterial activity, biosafety, ease of use, and stable storage, make it a promising hemostatic agent for emergency situations.


Assuntos
Quitosana , Hemostáticos , Trombose , Humanos , Fibrina , Adesivos/farmacologia , Coagulação Sanguínea , Hemostáticos/farmacologia , Quitosana/farmacologia , Polissacarídeos/farmacologia , Antibacterianos/farmacologia
19.
Carbohydr Polym ; 333: 121973, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494226

RESUMO

Currently, bacterial infections and bleeding interfere with wound healing, and multifunctional hydrogels with appropriate blood homeostasis, skin adhesion, and antibacterial activity are desirable. In this study, chitosan-based hydrogels were synthesized using oxidized tannic acid (OTA) and Fe3+ as cross-linkers (CS-OTA-Fe) by forming covalent, non-covalent, and metal coordination bonds between Fe3+ and OTA. Our results demonstrated that CS-OTA-Fe hydrogels showed antibacterial properties against Gram-positive bacteria (Staphylococcus aureus)and Gram-negative bacteria (Escherichia coli), low hemolysis rate (< 2 %), rapid blood clotting ability, in vitro (< 2 min), and in vivo (90 s) in mouse liver bleeding. Additionally, increasing the chitosan concentration from 3 wt% to 4.5 wt% enhanced cross-linking in the network, leading to a significant improvement in the strength (from 106 ± 8 kPa to 168 ± 12 kPa) and compressive modulus (from 50 ± 9 kPa to 102 ± 14 kPa) of hydrogels. Moreover, CS-OTA-Fe hydrogels revealed significant adhesive strength (87 ± 8 kPa) to the cow's skin tissue and cytocompatibility against L929 fibroblasts. Overall, multifunctional CS-OTA-Fe hydrogels with tunable mechanical properties, excellent tissue adhesive, self-healing ability, good cytocompatibility, and fast hemostasis and antibacterial properties could be promising candidates for biomedical applications.


Assuntos
Quitosana , Polifenóis , Feminino , Camundongos , Animais , Bovinos , Quitosana/farmacologia , Quitosana/química , Adesivos/farmacologia , Hemostasia , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/farmacologia , Hidrogéis/química
20.
Carbohydr Polym ; 333: 121971, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494225

RESUMO

The development of a biomass adhesive as a substitute for petroleum-derived adhesives has been considered a viable option. However, achieving both superior bonding strength and toughness in biomass adhesives remains a significant challenge. Inspired by the human skeletal muscles structure, this study reveals a promising supramolecular structure using tannin acid (TA) functionalized poly-ß-cyclodextrin (PCD) (TA@PCD) as elastic tissues and chitin nanocrystals (ChNCs) as green reinforcements to strengthen the soybean meal (SM) adhesive crosslinking network. TA@PCD acts as a dynamic crosslinker that facilitates reversible host-guest interactions, hydrogen bonds, and electrostatic interactions between adjacent stiff ChNCs and SM matrix, resulting in satisfactory strength and toughness. The resulting SM/TA@PCD/ChNCs-2 adhesive has demonstrated satisfactory wet and dry shear strength (1.25 MPa and 2.57 MPa, respectively), toughness (0.69 J), and long-term solvents resistance (80 d). Furthermore, the adhesive can exhibit desirable antimildew characteristics owing to the phenol hydroxyl groups of TA and amino groups of ChNCs. This work showcases an effective supramolecular chemistry strategy for fabricating high-performance biomass adhesives with great potential for practical applications.


Assuntos
Quitina , Nanopartículas , Humanos , Nutrientes , Biomassa , Soja , Poli A , Adesivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...